

Prepared for:

NEW CENTRE WILMINGTON, LLC

806 GREEN VALLEY ROAD, SUITE 311 GREENSBORO, NC 27408

RECEIVED NOV 07 2016


PLANNING DIVISION PLANNING DIVISION

Stormwater & Erosion Control Calculations

New Centre Apartments Fitness Center

New Hanover County, NC City of Wilmington

May 25, 2016 Revised July 29, 2016 Revised October 28, 2016

Prepared by:

Zak Shipman, P.E. The Curry Engineering Group, PLLC PO Box 2018 205 S. Fuquay Ave. Fuquay-Varina, NC 27526 (919)552-0849

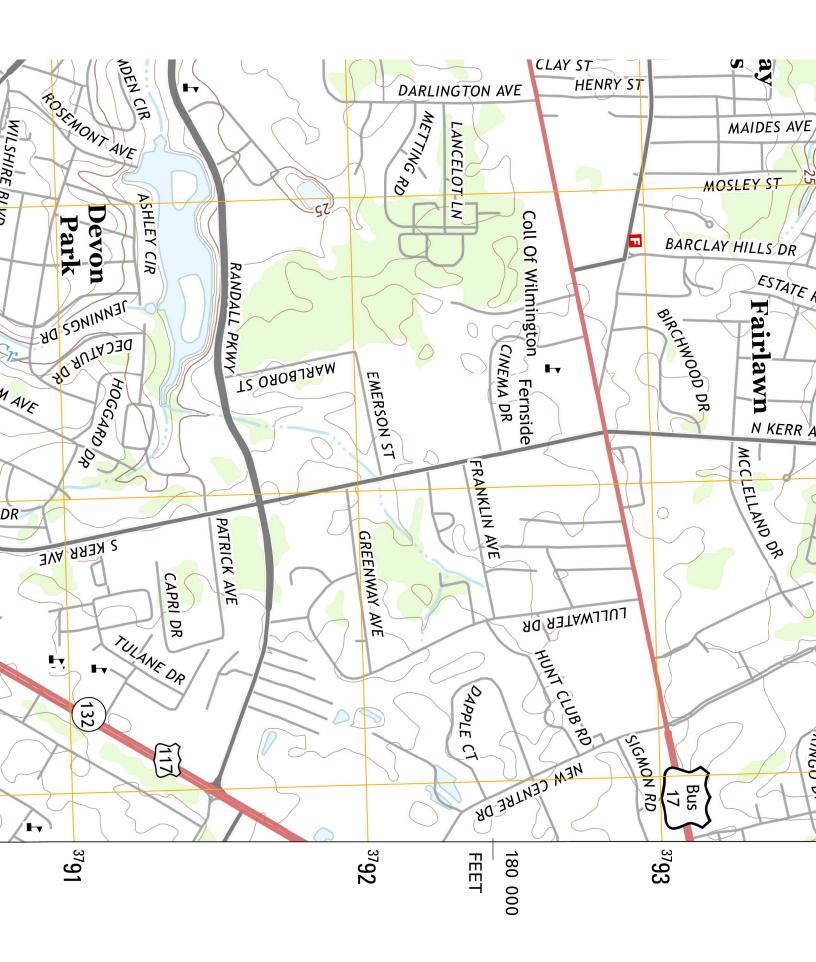
RECEIVED

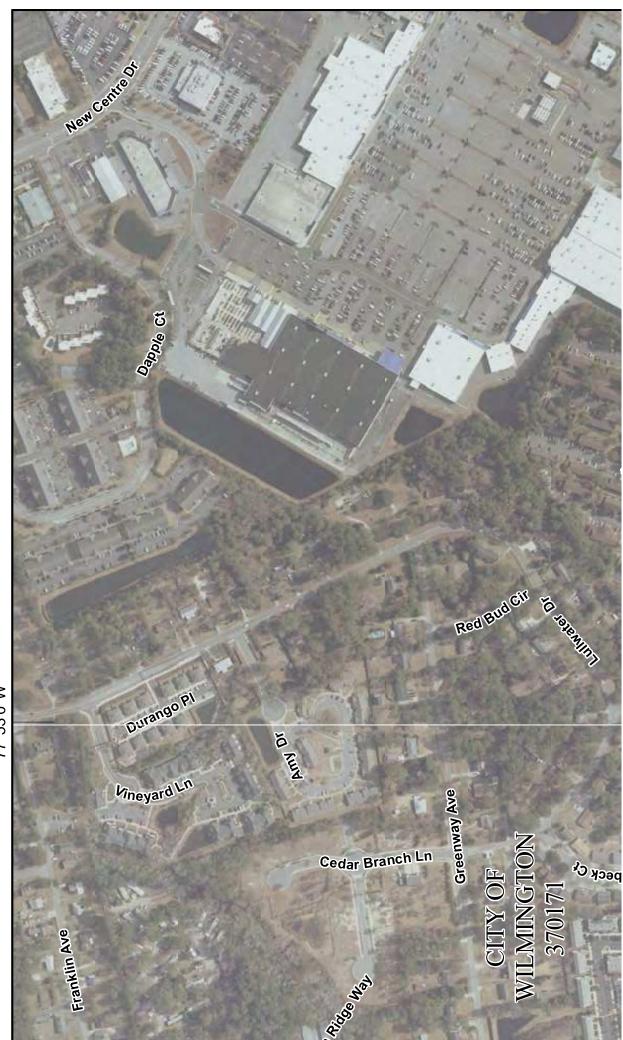
NOV 0 9 2016

ENGINEERING

TABLE OF CONTENTS

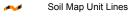
SUPPORT DOCUMENTS


USGS Topography Map FEMA Floodplain Maps NRCS Soils Information NOAA Precipitation Data


CALCULATIONS & ANALYSIS

Stormwater-Storm Sewer Pipe Network Calculations Stormwater BMP Calculations

77°53'0"W


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

▲ Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

→ Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

10

Stony Spot

Wery Stony Spot

Spoil Area

Wet Spot

△ Other

Special Line Features

Water Features

Streams and Canals

Transportation

→ Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:15,800.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

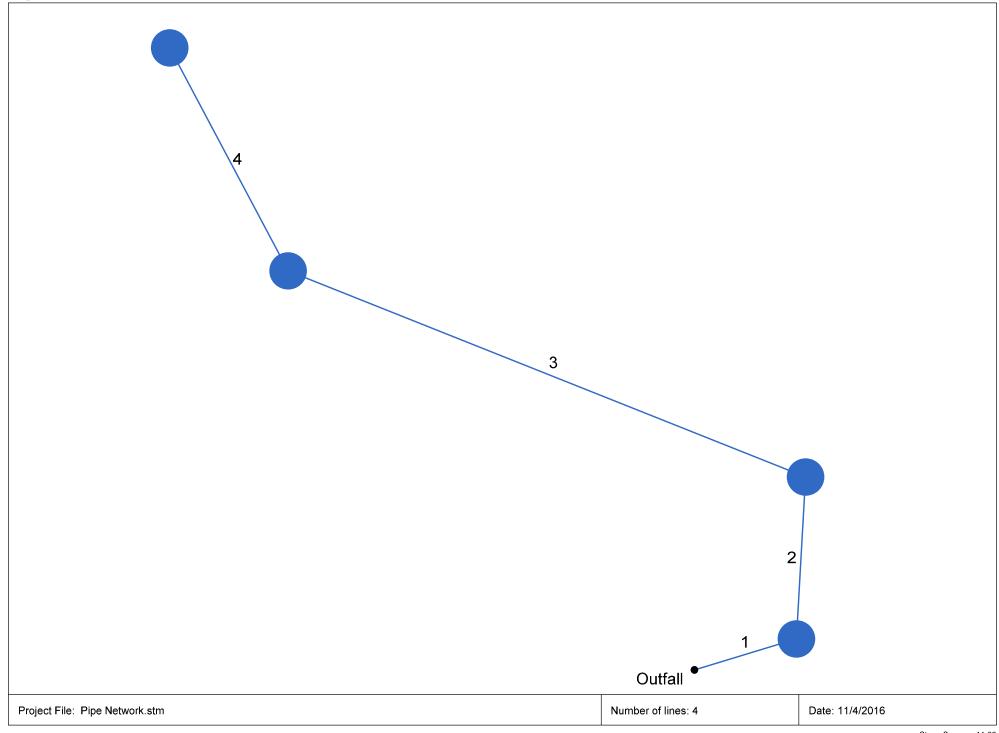
Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: New Hanover County, North Carolina Survey Area Data: Version 16, Sep 29, 2015

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.


Date(s) aerial images were photographed: Data not available.

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

New Hanover County, North Carolina (NC129)											
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI								
Le	Leon sand	0.3	100.0%								
Totals for Area of Interest		0.3	100.0%								

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Inventory Report

Line		Align	ment			Flow	v Data					Physical	Data				Line ID
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert El Dn (ft)	Line Slope (%)	Invert El Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	12.060	-20.647	DrCrb	0.00	0.56	0.60	5.0	37.49	0.33	37.53	15	Cir	0.012	1.40	39.60	
2	1	22.210			0.00	0.22	0.75	5.0	37.53	0.50	37.64	15	Cir	0.012	1.40	39.60	
3	2	63.880			0.00	0.03	0.50	5.0	37.64	0.50	37.96	15	Cir	0.012	1.05	40.50	
4	3	33.250			0.00	0.09	0.70	5.0	37.96	0.51	38.13	15	Cir	0.012	1.00	40.60	
		• Network.si										Number o					1/4/2016

Structure Report

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1		DropCurb	39.60	Cir	4.00	4.00	15	Cir	37.53	15	Cir	37.53
2		DropCurb	39.60	Cir	4.00	4.00	15	Cir	37.64	15	Cir	37.64
3		DropCurb	40.50	Cir	4.00	4.00	15	Cir	37.96	15	Cir	37.96
4		DropCurb	40.60	Cir	4.00	4.00	15	Cir	38.13			
	File: Pipe Network.stm							lumber of Struct		1	Date: 11/4/201	

Storm Sewer Tabulation

Station	I	Len	Drng A	rea	Rnoff	Area x	C	Тс			Total		Vel	Pipe		Invert E	lev	HGL El	ev	Grnd / R	im Elev	Line ID
ine 1	То		Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
L	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
2	End 1 2	12.060 22.210 63.880 33.250	0.56 0.22 0.03	0.90 0.34 0.12 0.09	0.60 0.75 0.50 0.70	0.34 0.17 0.02 0.06	0.58 0.24 0.08 0.06	5.0 5.0 5.0 5.0	8.1 7.9 6.1 5.0	8.5 8.6 9.3 9.7	4.93 2.09 0.72 0.61	4.03 4.92 4.95 5.00	4.02 1.70 0.59 0.52	15 15 15 15 15	0.33 0.50 0.50 0.51	37.49 37.53 37.64 37.96	37.53 37.64 37.96 38.13	38.74 39.13 39.21 39.23	38.78 39.15 39.22 39.23	39.84 39.60 39.60 40.50	39.60 39.60 40.50 40.60	

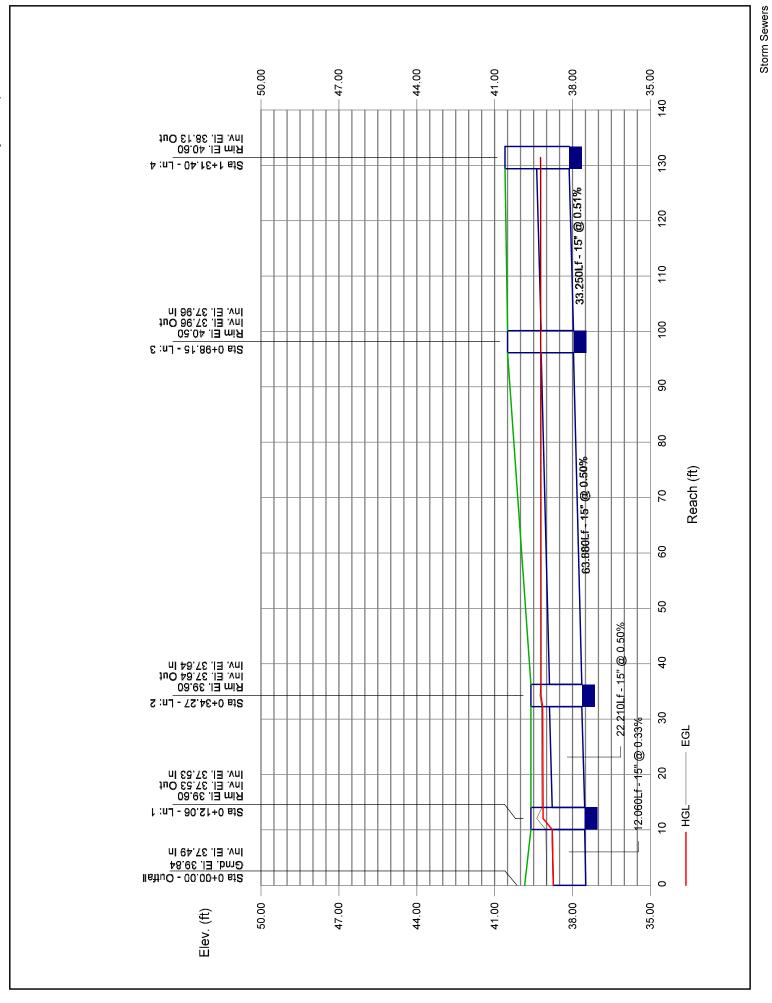
Number of lines: 4

NOTES:Intensity = 96.48 / (Inlet time + 12.40) ^ 0.80; Return period =Yrs. 10; c = cir e = ellip b = box

Project File: Pipe Network.stm

Run Date: 11/4/2016

Hydraulic Grade Line Computations


ine	Size	Q			D	ownstre	am				Len				Upst	ream				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head	EGL elev (ft)	Sf (%)	Sf	Enrgy loss (ft)	coeff (K)	loss (ft)
	("")	(CIS)	(11)	(11)	(11)	(Sqit)	(105)	(11)	(11)	(70)	(11)	(11)	(11)	(11)	(Sqit)	(105)	(ft)	(11)	(/0)	(70)	(11)	(14)	(11)
1	15	4.93	37.49	38.74	1.25	1 23	4.02	0.25	38.99	0.497	12.060	37 53	38.78	1.25	1.23	4.02	0.25	39.03	0.493	0.495	0.060	1.40	0.35
2	15	2.09	37.53	39.13	1.25		1.70	0.05	39.18	0.089	22.210		39.15	1.25	1.23	1.70	0.04	39.20		0.089	0.020	1.40	0.06
3	15	0.72	37.64	39.21	1.25	1.23	0.59	0.01	39.22	0.011	63.880		39.22	1.25	1.23	0.59	0.01	39.23	0.011	0.011	0.007	1.05	0.01
4	15	0.61	37.96	39.23	1.25		0.50	0.00	39.23		33.250		39.23	1.10		0.54	0.00	39.23			0.002		0.00
_		0.01	37.30	33.23	1.25	1.25	0.50	0.00	00.20	0.000	33.230	30.13	33.23	1.10	1	0.54	0.00	33.23	0.007	0.007	0.002	1.00	0.00
																			<u> </u>				

Project File: Pipe Network.stm

Number of lines: 4

Run Date: 11/4/2016

; c = cir e = ellip b = box

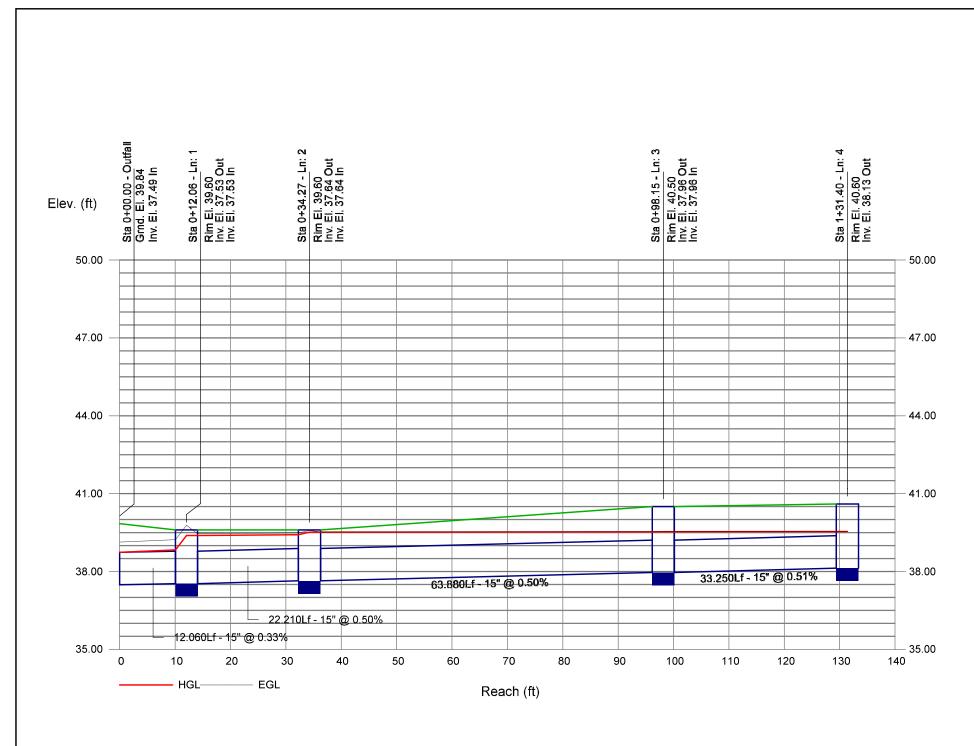
Storm Sewer Tabulation

tatio	n	Len	Drng A	rea	Rnoff	Area x	C	Тс		Rain	Total	Сар	Vel	Pipe		Invert E	lev	HGL Ele	ev	Grnd / R	im Elev	Line ID
ine			Incr	Total	coeff	Incr	Total	Inlet	Syst	(I)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
2 3 4	1 2	12.060 22.210 63.880 33.250	0.22	0.90 0.34 0.12 0.09	0.60 0.75 0.50 0.70	0.34 0.17 0.02 0.06	0.58 0.24 0.08 0.06	5.0 5.0 5.0 5.0	7.5 7.4 5.9 5.0	10.7 10.7 11.4 11.9	6.18 2.61 0.89 0.75	4.03 4.92 4.95 5.00	5.03 2.13 0.73 0.61	15 15 15 15	0.33 0.50 0.50 0.51	37.49 37.53 37.64 37.96	37.53 37.64 37.96 38.13	38.74 39.39 39.51 39.53	38.83 39.42 39.53 39.54	39.84 39.60 39.60 40.50	39.60 39.60 40.50 40.60	
	\	Pipe Ne															er of lines:				te: 11/4/20	

NOTES:Intensity = 78.44 / (Inlet time + 10.10) ^ 0.70; Return period = Yrs. 50; c = cir e = ellip b = box

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	am				Len				Upstı	eam				Chec	k	JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)		Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)		Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Sf	Enrgy loss (ft)	coeff (K)	loss (ft)
	(,	(3.3)	(,	1.9	.,	(-4)	(,	.,	(,	(,	()	(,	(1.5)	(,	(-4.4)	(,	()	(,	(,	(70)	(,	-	
1	15	6.18	37.49	38.74	1.25	1.23	5.03	0.39	39.13	0.780	12.060	37.53	38.83	1.25	1.23	5.03	0.39	39.23	0.780	0.780	0.094	1.40	0.55
2	15	2.61	37.53	39.39	1.25	1.23	2.13	0.07	39.46	0.139	22.210	37.64	39.42	1.25	1.23	2.13	0.07	39.49	0.139	0.139	0.031	1.40	0.10
3	15	0.89	37.64	39.51	1.25	1.23	0.73	0.01	39.52	0.016	63.880	37.96	39.53	1.25	1.23	0.73	0.01	39.53	0.016	0.016	0.010	1.05	0.01
4	15	0.75	37.96	39.53	1.25	1.23	0.61	0.01	39.54	0.011	33.250	38.13	39.54	1.25	1.23	0.61	0.01	39.54	0.011	0.011	0.004	1.00	0.01


Number of lines: 4

; c = cir e = ellip b = box

Project File: Pipe Network.stm

Storm Sewers v11.00

Run Date: 11/4/2016

Wet Detention Basin Modification Calculations

Hawthorne at New Centre

Project: Location: Wilmington, NC 5/24/2016 Date Pond Number: 1 Total Project Area: 774,932 sf or 17.79 ac Total On-Site Drainage Area: 774,932 sf or 17.79 ac 0.00 Off-site Drainage Area: 0 sf or ac Total: 17.79 ac. On-Site Impervious Area: **Buildings** (Existing) 101,295 Originally Approved Imp. Area: 406,563 sf Parking & Roads (Existing): 263,236 sf Original Approved % Imp: 52.46% Sidewalks (Existing): 42,032 sf 53.75% sf Modified Watershed % Imp: New Impervious: 4,990 (including new Imp. Area) Future Impv. (from Mod): 5,000 sf Off-Site Impervious: 0 Total New Impervious Area: 9,990 Total Impervious Area: 416,553 9.56 sf or ac. Calculate Required Surface Area: Avg. Perm. Pool Depth: 7 Feet (per permit) SA/DA Ratio: 2.08 Minimum Required Surface Area: 16119 sf Calculate Original WQv Storage Volume: Use Simple Method with volume for 1.0" storm (per original pond design): Rv = 0.05 + 0.009(I)Rv= Runoff Coefficient (ratio of runoff to rainfall in inches) Io= Impervious Percentage-Original 0.53 Rv= WQv= 3630 x Rd x Rv x A Rd= Design Storm= 1.0" A= Drainage Area 34470 WQv= WQv= Storage Volume cf

Calculate Delta WQv Storage Volume (based on new impervious area only):

Use Simple Method with volume for 1.5" storm (for new impervious area):

Rv = 0.05 + 0.009(I)

Rv= Runoff Coefficient (ratio of runoff to rainfall in inches)

Ip= Impervious Percentage-Additional= 100%

(Assume additional impervious area is separate watershed with 100% imp.

Rv= 0.95 coverage)

WQv= 3630 x Rd x Rv x A Rd= Design Storm= 1.5"

A= Drainage Area-New Impervious Area Only

WQv= 1186 cf WQv= Storage Volume

Total WQv= Original WQv Volume + Delta WQv Volume

Total WQv= 35657 cf

Elevation	Contour Area	Inc. Volume	Accumulated Volume	Stage
	(sf)	(cf)	(cf)	
35.10	27500	0	0	0
35.50	28301	11160	11160	0.4
36.00	29320	14405	25565	0.9
36.50	30356	14919	40484	1.4
37.00	31410	15442	55926	1.9

Calculated S-S Parameters:

b=	1.0344
Ks=	28792.7535

Orifice EI: 35.10

Overflow EI: 37.00

Overflow Spillway Stage:

1.9 ft
Spillway Crest Length
5 ft

Storage Below Overflow: 55926 cf S=Ks*Z^b

WQv Stage: 1.23 or Elevation 36.33
Surface Area at WQv Stage: 30003 Square Feet

Calculate WQv Drawdown Time:

Drawdown Orifice Diameter:	2.50	Cross Section Area:	0.03407	sf
Orifice Coefficient:	0.60	Average Head:	0.5986	ft
Number of Orifices:	1	Discharge:	0.1269	cfs
		•		•'

WQv Drawdown Time: 78.03 hours or 3.25 days

Weighted Curve Number Calculation

Existing Impervious Percentage:	52.4643%
New Impervious Percentage:	53.7535%

Hydraulic Soil Group: Leon, Murville Use HSG C

Curve Numbers:

Impervious: 98
Grass, Good Condition: 74

Existing Weighted CN: 86.59

New Weighted CN: 86.90

Based on the Weighted Curve number, pond flood routing and overflow hydraulics should remain the same. Note that this analysis does not constitute a flood-routing analysis of the existing pond.

NOAA Atlas 14, Volume 2, Version 3 Location name: Wilmington, North Carolina, US* Latitude: 34.2387°, Longitude: -77.8797° Elevation: 41 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

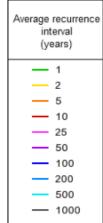
PF tabular | PF graphical | Maps & aerials

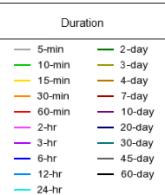
PF tabular

1 i tabulai											
PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration					ge recurren						
	1	2	5	10	25	50	100	200	500	1000	
5-min	6.28 (5.87-6.76)	7.45 (6.95-8.02)	8.72 (8.14-9.36)	9.72 (9.02-10.4)	11.0 (10.2-11.8)	11.9 (11.0-12.8)	12.9 (11.8-13.8)	13.9 (12.6-14.9)	15.1 (13.6-16.3)	16.1 (14.4-17.4)	
10-min	5.01 (4.69-5.39)	5.96 (5.56-6.41)	6.98 (6.51-7.50)	7.78 (7.22-8.35)	8.75 (8.09-9.37)	9.49 (8.74-10.2)	10.2 (9.38-11.0)	11.0 (9.99-11.8)	12.0 (10.8-12.9)	12.7 (11.3-13.7)	
15-min	4.18 (3.90-4.50)	5.00 (4.66-5.37)	5.89 (5.49-6.32)	6.56 (6.09-7.04)	7.39 (6.84-7.92)	8.01 (7.38-8.60)	8.64 (7.91-9.26)	9.24 (8.40-9.92)	10.0 (9.03-10.8)	10.6 (9.49-11.5)	
30-min	2.86 (2.68-3.08)	3.45 (3.22-3.71)	4.19 (3.90-4.49)	4.75 (4.41-5.10)	5.47 (5.06-5.86)	6.03 (5.55-6.47)	6.61 (6.05-7.09)	7.19 (6.54-7.72)	7.98 (7.19-8.60)	8.61 (7.68-9.28)	
60-min	1.78 (1.67-1.92)	2.16 (2.02-2.33)	2.68 (2.50-2.88)	3.09 (2.87-3.32)	3.65 (3.37-3.90)	4.09 (3.76-4.38)	4.55 (4.17-4.88)	5.04 (4.59-5.42)	5.72 (5.16-6.17)	6.29 (5.61-6.78)	
2-hr	1.05 (0.972-1.15)	1.28 (1.18-1.40)	1.64 (1.51-1.78)	1.93 (1.77-2.11)	2.36 (2.16-2.57)	2.73 (2.48-2.97)	3.13 (2.83-3.40)	3.57 (3.20-3.87)	4.22 (3.75-4.59)	4.78 (4.21-5.22)	
3-hr	0.750 (0.693-0.821)	0.911 (0.840-0.996)	1.17 (1.07-1.27)	1.39 (1.27-1.51)	1.72 (1.57-1.87)	2.01 (1.82-2.19)	2.33 (2.10-2.53)	2.69 (2.40-2.92)	3.24 (2.85-3.51)	3.72 (3.23-4.04)	
6-hr	0.467 (0.432-0.512)	0.568 (0.525-0.622)	0.728 (0.671-0.797)	0.868 (0.797-0.948)	1.08 (0.983-1.17)	1.26 (1.15-1.37)	1.47 (1.32-1.60)	1.70 (1.52-1.85)	2.06 (1.81-2.24)	2.37 (2.06-2.58)	
12 - hr	0.272 (0.249-0.300)	0.330 (0.302-0.363)	0.426 (0.390-0.469)	0.511 (0.465-0.560)	0.639 (0.577-0.699)	0.753 (0.676-0.822)	0.882 (0.787-0.963)	1.03 (0.907-1.12)	1.26 (1.09-1.37)	1.46 (1.25-1.59)	
24 - hr	0.161 (0.147-0.179)	0.195 (0.178-0.218)	0.253 (0.230-0.281)	0.303 (0.275-0.337)	0.381 (0.342-0.422)	0.451 (0.401-0.499)	0.530 (0.466-0.587)	0.620 (0.538-0.688)	0.759 (0.645-0.848)	0.883 (0.737-0.991)	
2-day	0.095 (0.087-0.106)	0.115 (0.106-0.128)	0.148 (0.135-0.164)	0.176 (0.161-0.195)	0.220 (0.198-0.243)	0.258 (0.230-0.286)	0.301 (0.266-0.335)	0.350 (0.304-0.391)	0.425 (0.361-0.477)	0.490 (0.410-0.554)	
3-day	0.068 (0.062-0.075)	0.082 (0.075-0.090)	0.104 (0.095-0.115)	0.124 (0.113-0.137)	0.153 (0.138-0.169)	0.179 (0.160-0.198)	0.207 (0.183-0.230)	0.239 (0.209-0.267)	0.288 (0.246-0.323)	0.331 (0.278-0.374)	
4-day	0.054 (0.050-0.060)	0.065 (0.060-0.072)	0.082 (0.075-0.091)	0.097 (0.089-0.107)	0.120 (0.108-0.132)	0.139 (0.124-0.153)	0.160 (0.142-0.178)	0.184 (0.161-0.205)	0.219 (0.189-0.246)	0.251 (0.212-0.283)	
7-day	0.035 (0.033-0.039)	0.043 (0.040-0.047)	0.054 (0.050-0.059)	0.063 (0.058-0.069)	0.076 (0.070-0.083)	0.088 (0.080-0.096)	0.100 (0.090-0.110)	0.114 (0.101-0.125)	0.134 (0.117-0.148)	0.150 (0.130-0.167)	
10-day	0.028 (0.026-0.030)	0.034 (0.031-0.036)	0.042 (0.039-0.045)	0.048 (0.045-0.053)	0.058 (0.053-0.063)	0.066 (0.061-0.072)	0.075 (0.068-0.082)	0.085 (0.076-0.093)	0.099 (0.087-0.109)	0.110 (0.096-0.123	
20 - day	0.019 (0.018-0.020)	0.022 (0.021-0.024)	0.027 (0.025-0.029)	0.031 (0.029-0.034)	0.037 (0.034-0.040)	0.042 (0.038-0.045)	0.047 (0.043-0.051)	0.052 (0.047-0.057)	0.060 (0.053-0.065)	0.066 (0.058-0.073	
30 - day	0.015 (0.014-0.016)	0.018 (0.017-0.019)	0.022 (0.021-0.023)	0.025 (0.023-0.026)	0.029 (0.027-0.031)	0.032 (0.030-0.034)	0.036 (0.033-0.038)	0.039 (0.036-0.042)	0.044 (0.040-0.048)	0.048 (0.043-0.052)	
45-day	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.018 (0.017-0.019)	0.020 (0.019-0.021)	0.023 (0.022-0.025)	0.026 (0.024-0.027)	0.028 (0.026-0.030)	0.031 (0.029-0.033)	0.035 (0.032-0.037)	0.037 (0.034-0.041	
60-day	0.012 (0.011-0.012)	0.014 (0.013-0.014)	0.016 (0.015-0.017)	0.018 (0.017-0.019)	0.020 (0.019-0.021)	0.022 (0.021-0.023)	0.024 (0.022-0.026)	0.026 (0.024-0.028)	0.028 (0.026-0.031)	0.030 (0.028-0.033)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.


Back to Top

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 34.2387°, Longitude: -77.8797°

NOAA Atlas 14, Volume 2, Version 3

0.10

0.01

Created (GMT): Tue May 17 19:58:34 2016

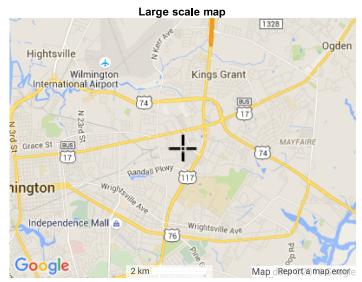
500

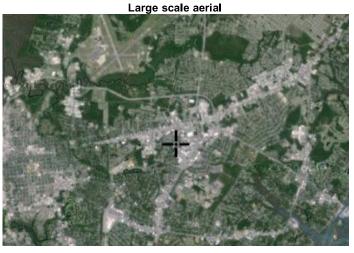
1000

200

Back to Top

Maps & aerials




10

Average recurrence interval (years)

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>